位置:首页 >  推荐产品

夜视仪

来源: 作者: 时间:2017-06-29 返回

以像增强器为核心器件的夜间外瞄准具,其工作时不用红外探照灯照明目标,而利用微弱光照下目标所反射光线通过像增强器在荧光屏上增强为人眼可感受的可见图像来观察和瞄准目标。红外夜视仪是利用光电转换技术的军用夜视仪器。它分为主动式和被动式两种:前者用红外探照灯照射目标,接收反射的红外辐射形成图像;后者不发射红外线,依靠目标自身的红外辐射形成热图像,故又称为热像仪

作用:

夜间可见光很微弱,但人眼看不见的红外线却很丰富。红外线视仪可以帮助人们在夜间进行观察、搜索、瞄准和驾驶车辆。尽管人们很早就发现了红外线,但受到红外元器件的限制,红外遥感技术发展很缓慢。直到1940年德国研制出硫化铅和几种红外透射材料后,才使红外遥感仪器的诞生成为可能。此后德国首先研制出主动式红外夜视仪等几种红外探测仪器,在一次与英军坦克纵队的遭遇战中,装备了红外观瞄装置的德军豹式坦克在一举击毁两辆英军萤火虫坦克,值得一提的是,此战役中德军使用的是被动式红外夜视装置,因此作战时还有一部猫头鹰红外探照灯车在远方用红外线为豹式坦克照明。

原子是永恒运动的。它们不停地振动、移动和旋转。即便是构成我们座椅的原子也是不断运动着的。原子有几种不同的激发状态。换言之,它们具有不同的能量。如果我们将大量的能量赋予一个原子,它就会摆脱基态能级而达到激发水平。激发水平取决于以热、光或电等形式施加到原子上的能量的多少。

原子由原子核(包括质子和中子)和电子云构成。我们可以将电子云中的电子设想成在不同轨道上围绕着原子核运动。现在还无法观察到电子的离散轨道,但把这些轨道设想成原子不同的能级会更容易理解。换句话说,如果我们向原子施加一定的热能,可以预见的是,一些处于低能轨道的电子会转移到高能轨道上,即离原子核更远。

电子转移到高能轨道后,最终仍要回到基态。在此过程中,电子会以光子(一种光线粒子)的形式释放能量。您会发现,原子不断地以光子的形式释放能量。举例来说,当烤面包炉内的发热器之所以会变成亮红色,就是因为原子被热力激发,释放出了红色的光子。激发态的电子比未受激发的电子具有更高的能量,并且正是由于电子吸收了若干能量才达到了激发水平,它会将这一能量释放出来以回归基态。这一能量会以光子的形式(光能)被释放出来。发射出的光子具有特定的波长(颜色),这取决于释出光子时电子的能量。

 


夜视仪

任何生物都要耗费能量,很多没有生命的物品也是如此,例如引擎和火箭。能量消耗会产生热量。反过来,热能会促使物体中的原子发射出位于热红外线光谱中的光子。物体温度越高,释出的红外线光子的波长就越短。如果物体的温度非常高,它发出的光子甚至能进入可见光光谱,从红光开始,然后是橙光、黄光、白光,直至蓝光。不过,夜视成像图以其诡异的绿色光泽而著称。

 

在图像增强管的末端,电子会撞击一个具有磷光质涂层的屏幕。这些电子会保持它们通过微通道时的相对位置,这会确保图像的完好,因为电子排列的方式同起初光子排列的方式相同。这些电子带有的能量会使磷光质达到激发状态并释出光子。这些磷光质会在屏幕上生成绿色图像,这也成了夜视仪的一大特色。 通过另一副称为目镜的透镜,就可以观测到绿色磷光图像,还可以使用目镜放大图像或调节焦距NVD可以与电子显示设备相连,例如显示器,也可以直接透过目镜观测图像。

 

未经本网书面授权严禁转载、摘编或建立镜像,否则视为侵权。
主办单位: 中关村融鼎军民融合智能装备协会 地址: 北京市海淀区紫竹院路116号嘉豪国际中心D座2层 邮编: 100097
电话总机:010-58930618    传真:58930618    E-mail:znzx2017@163.com    www.zgcrd.org.cn
违法和不良信息举报电话:400 6060 335

官方微信公众号